Marquee XML-RPC Library

An implementation of the XML- RPC Specification for Java™

Abstract

This document contains a user’'s guide and implementation
walkthrough. It may be useful to both users and developers
customising the library or just wishing to increase their
knowledge of it.

Marquée XML-RPC Library

CONTENTS

1 INTRODUCTION ..o

1.1 Background
1.1.1 Design strategies

2 OVERVIEW ...

2.1 Components

3 SERIALIZATION ...

3.1 Serializers
3.1.1 XmlIRpcCustomSerializer

4 THE CLIENT. .. e

4.1 Vanilla Flavored XmIRpcClient
4.2 Double Chocolate Chip XmIRpcProxy
4.2.1 Example

5 THE SERVER. ...

5.1 Overview
5.1.1 Setting up an XML-RPC server
5.1.2 Invocation Handlers
5.1.3 Invocation Processors

6 XML-RPC AND SERVLETS ...,

6.1 Example
6.1.1 The init() method
6.1.2 The doPost() method

7 OBIECTCOMM ...

7.1 The Objectcomm Package
7.1.1 Using the package

Marquée XML-RPC Library

1 INTRODUCTION

1.1 Background

The Marquée XML-RPC Library is an implementation of the XML-
RPC specification and is based on another implementation for
Java™ by Hannes Walnoéffer, from which several ideas were
borrowed when designing this software. The reason for developing
this library was to fill in the blanks, in terms of functionality,
where other implementations fell short. Particularly, customizeable
serializers was something we could not do without, and we also
wanted to optionally make use of features availablein JDK 1.3, like
the ability to dynamically generate proxy classes. We wanted the
design to allow for customization in other areas as well.

1.1.1 Design strategies

When developing the library, we have tried to keep resource
consumption to reasonable minimum to make the library slim
enough to be used in situations where this approach is preferable or
necessary. We have also focused on keeping the code as clean as
possible, hoping it will reach production standard and be a natural
choice when adding XML-RPC support to various Java™ projects.

We wanted the library to be customizeable in as many areas as
possible and will continue to open up the API for further
customization. This strategy has been proven useful by Rainer
Bischof at Electronic Data Systems, who has added apackage that
supports transferring of complete object graphs and exceptionsin a
fashion very similar to that of RMI.

Inthespirit of XML-RPC, the source code has been made available
for all usein hope that we will receive lots of feedback so that we
may tune the library to fit into as many situations as possible. We
also welcome code contributions of any kind that will contributeto
making this library more stable, efficient, interoperable, or
comprehensible.

Marquée XML-RPC Library

2 OVERVIEW

2.1 Components

The library consists of four major parts:

Server

Client

Par ser

Serializer

Users will come in contact with the serializer when specifying
which custom serializers to be available during the serialization
process. The library contains several
serializing Java 2 collections, arrays, and other types of objects.
Users will also come in contact with the parser when specifying
which SAX driver to use during parsing. All other interaction

Can be used in a servlet environment or as a stand-
alone server accepting HTTP posts containing XML-
RPC messages. The server uses the parser to
interpret the XML-RPC messages and the serializer
to convert return values to their XML-RPC
counterparts. A s ecure server supporting Secure
Sockets Layer (SSL) will be available during the fall
2001, or so.

Connects to an XML-RPC server and sends and
receives XML-RPC messages and responses. It uses
the serializer to convert call arguments and the
parser to interpret return values.

Uses any SAX compliant driver to parse XML-RPC
messages and extracting the values containedtherein.

Converts Java objects into their XML-RPC
counterparts. Custom serializers are used for
converting objects not inherently known to the basic
serializer.

occurs through the server and the client.

Marquée XML-RPC Library

custom serializers for

3 SERIALIZATION

3.1 Serializers

When sending XML-RPC messages from an XmIRpcClient to an
XML-RPC server and from an XmlRpcServer to an XML-RPC
client, Java objects need to be translated into their XML-RPC
representations. Servers need to translate return values from their
handlers, and clients need to translate arguments supplied in
method calls. Thisis accomplished by using serializers.

All serialization occursinitially through the XmlIRpcSerializer class
which has support for basic object types like java.lang.String,
java.lang.Integer, and so forth (see list below). If the
XmlRpcSerializer is passed an object which it does not recognize, it
keeps a list of XmIRpcCustomSerializers which it tries to use
instead. Each custom serializer reports which kind of Java object it
knows how to serialize.

boolean char

byte short

int long

float double
String java.util.Date
byte[]

The XmlIRpcSerializer class supplies a static serialize() method
through which all Java objects are serialized. This applies when
using custom serializers as well. The serialize() method converts
the supplied object and appends the XM L-RPC representationinthe
supplied string buffer.

public static void serialize(
Object value,
StringBuffer output);

By using custom serializers, Java objects not inherently supported
by the XmlIRpcSerializer may be handled as well. Custom
serializers are registered and unregistered through the static
registerCustomsSerializer() and unregisterCustomsSerializer()
methods.

Marquée XML-RPC Library

public static void registerCustomSerializer(
XmIRpcCustomSerializer serializer);

public static void unregisterCustomSerializer(
XmIRpcCustomSerializer serializer);

As the methods in XmIRpcSerializer are static, custom serializers
need only be registered with the XmlRpcSerializer once per JVM
session and will be available to all classes within the JVM.

3.1.1 XmIRpcCustomsSerializer

The following class represents a custom serializer that may handle
any kind of Java 2 collection which is serialized into an XML-RPC
array. This serializer isincluded in the Marquée XML-RPC library.

public class CollectionSerializer
implements XmIRpcCustomSerializer

{
public Class getSupportedClass()
{
return Collection.class;
}
public void serialize(
Object Value,
StringBuffer output)
{
Collection c = (Collection) value;
Iterator iter = c.iterator();
output.append("<array><data>");
while (iter.hasNext())
{
XmIRpcSerializer.serialize(iter.next());
b
output.append("</data></array>");
3
3

This class implements the methods introduced in
XmlIRpcCustomSerializer and is a complete serializer.

3.1.1.1 getSupportedClass()

The getSupportedClass() method returns the class indicating which
types of objectsit knows how to serialize. This method is called in
two situations by the XmlIRpcSerializer. First when the serializer is
installed by calling XmlIRpcSerializer.registerCustomSerializer(),
and second when an actual object has been requested for serializa-
tion by calling the XmIRpcSerializer.registerCustomSerializer()

Marquée XML-RPC Library

method.

When registering a custom serializer, XmlRpcSerializer
investigates the supported class so that it can determine wherein
the list of custom serializersthe serializer belongs. For instance, if
the serializer list already contains a serializer that knows how to
handle java.util.Vector objects, the generic CollectionSerializer,
above, will end up after the java.util.Vector serilizer. That is, the
Vector serializer will override the generic CollectionSerializer, asit
operates on a more specialized kind of collection.

When an object has been requested for serialization, the
XmlRpcSerializer class queries every custom serializer in the list
until it finds a serializer that knows how to handle the supplied
value. For instance, when passing the XmIRpcSerializer.serialize()
method a java.util .ArrayList object, the CollectionSerializer, if
registered with XmlRpcSerializer, will catch the object (asitis an
instance of java.util.Collection) and convert it into an XML-RPC
array.

3.1.1.2 serialize()

Notice how the serialize() method in the CollectionSerializer above
reuses the default serialization mechanism introduced in
XmlIRpcSerializer. The supplied collection may contain any kind of
object which the XmIRpcSerializer knows how to handle, or for
which a custom serializer has been registered. Theoretically, this
may result in arecursive call to the serialize() method above if any
of the elements in the collection is another collection.

3.1.1.3 Included custom serializers

The Marquee XML-RPC library supplies a few useful
implementations of the XmIRpcCustomSerializer interface for
converting generic collections and maps, as well as a few other
more specialized types. It also contains areflective serializer which
can serialize any type of object by using Java Reflection.

CollectionSerializer Serializes Java 2 collectionsinto XML-
RPC arrays (requires JDK 1.2 or
above).

MapSerializer Serializes Java 2 maps into XML-RPC

structs (requires JDK 1.2 or above).

HashtableSerializer Serializes hash tables into XML-RPC
structs.

Marquée XML-RPC Library

Vector Serializer

IntArraySerializer

FloatArraySerializer

DoubleArraySerializer

BooleanArraySerializer

ObjectArraySerializer

ReflectiveSerializer

Serializes vectors into XML-RPC
arrays.

Serializes int[] arrays into XML-RPC
arrays.

Serializes float[] arrays into XML-RPC
arrays.

Serializes double[] arrays into XML-
RPC arrays.

Serializes boolean[] arrays into XML-
RPC arrays.

Serializes arrays containing any kind of
object into XML-RPC arrays.

Serializes any object into XML-RPC
structs using reflection.

The generic collection serializer, presented in the example above,
requires JDK 1.2, as does the generic map serializer. If you don't
support Java 1.2, the VectorSerializer and HashtableSerializer
classes may be used instead.

Marquée XML-RPC Library

4 THE CLIENT

4.1 Vanilla Flavored XmIRpcClient

There are two ways of invoking methods on an XML-RPC server —
through a regular XmIRpcClient or through an XmIRpcProxy. This
section describes how an XmlIRpcClient is setup and how you use it
to invoke methods. You use one XmIRpcClient for each XML-RPC
service you are using.

Each client is associated with a particular host, port and path into
that host. Thisisall specified when creating the client and can not
be changed once the client is created. Currently, an XmlIRpcClient
may only be used by one thread at a time. This applies to the
XmIRpcProxy as well. This will change with the next release,
however, expected sometime this summer. For now, if several
threads need to communicate with the same server, a separate
XmIRpcClient has to be created for each thread.

The XmIRpcClient uses the XmlRpcSerializer to convert call
arguments to their XML-RPC counterparts. Using custom
serializers, the arguments may be of just about any type. Thisisa
key issue; if you supply an argument of a type other than those
listed in 1.1, a custom serializer must be available to convert the
argument. Otherwise an exception will be raised.

To setup an XmlIRpcClient you perform the following steps:

// 1) Register the serializers we need
XmIRpcSerializer.registerCustomSerializer(
new HashtableSerializer());

// 2) Create the client.
XmIRpcClient client = new XmIRpcClient(
"www.stuffeddog.com", 80, '/speller/speller-rpc.cgi");

Instep 1, we make sure that all argumentswe will send to the client
will be serializable to XML-RPC. One of the methods we will call

later on thisclient will receive a Hashtable which is not inherently
supported by the XmlIRpcSerializer. Therefor, we register a custom
serializer (supplied with the Marquée XML-RPC Library) that
knows how to serialize Hashtables.

In step 2, we create the actual XmIRpcClient and specify which
server the client should send invocationsto. It isnot important that
step 1 comes before step 2; it is not until we actually invoke the
client that serialization occurs.

Toinvoke methods on the server, theinvoke() method isused. This
comesintwo flavors, both accepting the name of the method to i n-

Marquée XML-RPC Library

This feature requires JDK 1.3.

voke and either ajava.util.Vector or an object array containing the
arguments to use for the call:

// 3) Invoke a method.
Vector response = (Vector) client.invoke(
"speller.spellChecking",
new Object[] {
"To be or not to be, that is the gwestion",
new Hashtable() });

In this step, several things happen. First, we choose to call the
object array version of invoke(). The arguments are a string with a
typo, and an empty Hashtable. The client will serialize these
arguments into XML-RPC and open a socket towards
www.stuffeddog.com, using port 80. The server will hopefully
respond with an XML-RPC response. The response is parsed and
the contained return value will be constructed and returned to the
caller. In this case, we expect to receive avector with suggestions
for all spelling mis takes made in the text supplied in the call.
Sending the response vector to the console will show a suggestion
for the "gwestion" typo.

When using an XmIRpcClient we are responsible for converting the
return value to what we expect the server to respond with. Thiswill
always be of one of thetypeslistedin 1.1, or ajava.util.Vector or a
java.util.Hashtable. Whenever the responseisan XML-RPC array,
the return value will be a java.util.Vector, and whenever it is an
XML-RPC struct it will be ajava.util.Hashtable. Note that this has
nothing to do with the serializer. That is, even if we did not register
the HashtableSerializer, we would still receive a Hashtable if the
response was an XML-RPC struct. The serializer isonly involved
when sending arguments to the server.

4.2 Double Chocolate Chip XmIRpcProxy

An alternative way of calling server proceduresisto use adynamic
XmlIRpcProxy. When creating an instance of the XmIRpcProxy you
specify the URL of the server which should be proxied for, and a
list of interfaces the proxy should implement. The proxy may be
typecast to and called through any of these interfaces, which will
convert calls to XML-RPC messages that are sent to the server
using the "<handler>.<method>" naming convention. The names of
the interfaces and their methods should, in other words, correspond
to services and procedures available on the server.

4.2.1 Example

When developing an application using XML-RPC servers located

10

Marquée XML-RPC Library

somewhere on the Internet, you start by expressing the services
available on the servers in Java interfaces.

interface mailToTheFuture

{
/**

* Adds a message to username®s queue.

@param username The email address of a
registered user.

@param password must be that user®s password.

@param message A hashtable containing the
following elements; dateTime,
messageBody, receiverMailAd-
dress, and subject.

@return The number of messages in username®s
queue.

O X X X X X X X X X X X

*
N

int addMessage(
String username,
String password,
Hashtable message)
throws Throwable;

/**
* Deletes a message from username®s queue.

@param username The email address of a
registered user.

@param password must be that user®s password.

@param ordinal The number of the message to
remove.

ook ok ok ok ok ok ok ok %

@return An empty string.
*/

String deleteMessage(
String username,
String password,
int ordinal)
throws Throwable;

/** Rest of the methods are omitted for brevity */

}

Every service offered by a server that is to be used by the
applicationisdefined initsown interface. Thelist of interfaces are
supplied to XmlIRpcProxy.createProxy() along with the URL of the
server, to receive an object implementing the supplied interfaces.

Marquée XML-RPC Library 11

Object o = XmIRpcProxy.createProxy(
"www.mai ltothefuture.com”,
"/RPC2",
80,
new Class[] { mailToTheFuture.class });

The proxy object may be typecast to any of the interfaces and used
as such.

mailToTheFuture mttf = (mailToTheFuture) o;

System.out.printin(
mttf._addMessage(
“usr@mai ltothefuture.com”,
“secret”,
aMsgTable));

The call to mttf.addM essage() will result in an XML-RPC message
being sent to t he www.mailtothefuture.com host with "mailToThe-
Future. addMessage" as the included method call. The compiler
may check that the arguments are of correct type and allow IDE's to
perform code completion and such.

12

Marquée XML-RPC Library

5 THE SERVER

5.1 Overview

When setting up an XML-RPC server you supply a set of objects
that will receive the method calls parsed by the server dispatchers.
These objects must implement the XmlRpclnvocationHandler
interface which can be achieved by extending the
ReflectivelnvocationHandler class, wrapping the object in a
ReflectivelnvocationHandler instance, or implementing it from
scratch. The methods that are to be invoked through XML-RPC
must only use parameters of the types listed in Serializers (3.1).

An exception to this rule is when using invocation
processors that modify the list of call arguments
according to some set of rules. For instance, an
invocation processor may add an additional transaction
object for methods with names starting with "tx_".
These arguments are not transported using XML-RPC
and may be of any type.

Return values may be of any type supported by the built-in
serializer or any of the registered custom serializers. That is, if the
CollectionSerializer supplied with the XML-RPC library is
registered with the server, invocation handlers may return any type
of object implementing the Java 2 Collection interface. Custom
serializers are ordered by specialization. That is, the reflective
serializer will always be placed last and the MapSerializer will
always be placed before the CollectionSerializer, and so on. This
ensures that the most appropriate serializer will be used for an
object during serialization — for instance, a HashMap will not be
serialized using the generic Collection serializer if a MapSerializer
is available.

5.1.1 Setting up an XML-RPC server

This example shows how to set up a server by registering
invocation handlers and invocation processors. It also shows how to
specify which SAX driver and custom serializers to use.

Marquée XML-RPC Library

13

import marquee.xmlrpc.*;
import marquee.xmlrpc.serializers.*;

class SampleHandler extends ReflectivelnvocationHandler

{
String getNameOfMonth(int month)

throws IlllegalArgumentException

{
if (month > 0 & month < 13)
{
return months[month]J;
}
throw new IllegalArgumentException(
"Invalid month.");
}
String[] getAllMonths()
{
return months;
}
private final static String[] months =
{
"January', "February', "March', "April",
"May', "June'™, "July", "August', "September",
"October™, "November', '"December™
}
}
public class SampleServer
{
public staic void main(String[] args)
{
XmIRpcParser.setDriver(
"com.sun.xml .parser.Parser");
XmIRpcSerializer.registerCustomSerializer(
new ObjectArraySerializer());
XmIRpcServer server = new XmlRpcServer();
server.registerilnvocationHandler(
new SampleHandler());
server.runAsService(80);
}
}

The ObjectArraySerializer added in main() makes sure that methods
returning arrays of objects (including arrays of Strings) are
interpretable by the serializer.

5.1.2 Invocation Handlers

XML-RPC messages are parsed by the XmlIRpcServer and dis-
patched to an XmIRpclnvocationHandler corresponding to the han-
dler name contained in the element. The server creates an XML-

14

Marquée XML-RPC Library

RPC response based on the return value of the handler, or based on
an exception thrown by the handler. The XmlRpclnvocationHandler
interface contains a single method that invocation handlers must
implement. The ReflectivelnvocationHandler class supplies a de-
fault implementation of this interface that you'll use most of the
times.

public Object invoke(
String methodName,
Vector arguments)
throws Throwable;

5.1.2.1 ReflectivelnvocationHandler

The easiest way to create an invocation handler is to inherit the
XmlIRpcReflectivelnvocationHandler class which implements the
XmlIRpclnvocationHandler using Java Reflection to find the method
targeted by the call. The XmlIRpcReflectivelnvocationHandler class
may also be used to wrap a Java object in a reflective handler, if
your class is already inheriting from another class. If you look at
the SampleServer above, the SampleHandler represents a complete
invocation handler that extends the reflective invocation handler.
This is the most common way of creating invocation handlers.

If, for some reason, you do not wish to inherit
XmlRpcReflectivelnvocationHandler, you may wrap any objectina
new ReflectivelnvocationHandler. This gives the overhead of an
additional object being created (although with a single reference
data member);

ReflectivelnvocationHandler handler =
new ReflectivelnvocationHandler(myObject);

Thisapproach is useful when exposing legacy code with XML-RPC
or if your object classis already inheriting from another class. The
ReflectivelnvocationHandler constructor has an optional second
parameter in which you may supply alist of methods that should be
available in the wrapped object.

ReflectivelnvocationHandler handler =
new ReflectivelnvocationHandler(
myObject,
new String[] { “myFuncl”, “myFunc5” });

The string array indicates that only methods named*“myFuncl” or
“myFunc5” should be exposed for remote invocation, regardl ess of
how many methods are available in myObject. Y ou may update this

Marquée XML-RPC Library

15

list later on through a call to setEntryPoints() which is also avail-
ablefor classes extending ReflectivelnvocationHandler. Supplying
null will make all methods available.

handler.setEntryPoints(new String[] { “myFuncl” });

5.1.2.2 Writing your own handler from scratch

If you do not wish to use the reflective handler wich uses Java
Reflection to identify which method to call, you may write your
own invocation handler. This may increase performance slightly if
you have a single method or only a few methods in your class.

public class MylnvocationHandler
implements XmIRpclnvocationHandler

¢ public Object invoke(
String methodName,
Vector arguments)
throws Throwable
{
if (methodName.equals("someMethod"™))
{ return someMethod();
3
throw new Exception("Method not found in handler.™);
}
public String someFunction()
{
return "All done!™;
}
}

5.1.3 Invocation Processors

The XML-RPC library contains a powerful mechanism for attaching
functionality that should be executed on every invocation
regardless of the intended invocation handler. Through invocation
processors, developers may perform various steps before and after
handlers are invoked, and when exceptions during the invocation
occur.

For instance, writing a custom event logger that loggs all interac-
tion on an XML-RPC server to afile or over a socket isjust amat-
ter of i mplementing the XmlIRpclnvocationProcessor interface, and
attaching the processor to the XmlRpcServer. Its preProcess(),
postProcess() and onException() methods will be called on every
call sent to the server (onException() being called only on excep-
tions). Invocation processors may be used in several other, more

16

Marquée XML-RPC Library

useful scenarios as well.

The preProcess() method receives a lot of useful information from
the server that can be used to achieve some functionality; thecallld
is a sequence number that may be used to match a corresponding
call to postProcess() at a later time; the callerlp contains the IP
address of the client performing the call which may be very useful
inlogging, filtering, or session management situations; the handler
and method names indicate which method will ultimately be called
after the preProcess() method has had its say. This may be useful
when logging or filtering out clients from specific handlers or
methods. Finally, the arguments array contains the arguments that
will be used when invoking the invocation handler. This parameter
is particularly useful as you may add or remove elements from this
list.

boolean preProcess(
int callld,
String callerlp,
String handler,
String method,
Vector arguments);

Returning false from preProcess() meansthat the invocation should
be aborted. Currently, thereis no way of indicating to the user the
reason for aborting.

5.1.3.1 Scenarios

The following list shows afew scenarios where invocation handlers
could be used.

5.1.3.1.1 Filtering invocations

Implementing afilter isnot very difficult. The preProcess() method
of thefilterjust returns false when the | P address of the caller mat-
ches an IP address of an internal list. This may be extended to
include handlers and methods as well. The library contains an
exemple of afiltering processor that accepts | P addresses with wild
cards, among other things.

5.1.3.1.2 Managing transactions

Inthiscase, preProcess() could examine the name of the method (or
handler) and create some Transaction object if the name starts with
"tx_" for instance. The transaction object could be inserted firstin
the arguments list, and would be commited in postProcess(). The
invocation handlerswith names starting with "tx_" would naturally

Marquée XML-RPC Library

17

have to be prepared to accept this additional argument. Similarly,
other types of objects may be sent to invocation handlers that are
not serialized over XML-RPC. Using naming conventions is one
way of solving this problem.

5.1.3.1.3 Managing sessions

Thelibrary contains an additional processor example which, during
the invocation, associates the client with a Session object. The
Session object extends java.util.Hashtable and may be used by
invocation handlersto store client state between invocations. The
preProcess() method of that processor associates the handling
thread with the | P address of the caller. At any time, theinvocation
handler (or any code called from the handler) may acquire the
session object associated with the client. If a client performs five
concurrent calls to the server, these calls (assuming threads are
available) will be handled by five worker threads in the server,
simultaneously. The processor associates all five threads with the
same | P address, so all threads will receive the same session object
when asked for.

5.1.3.1.4 Encryption and Compression

Pre-processors may, based on some criteria, decrypt or decompress
particular arguments before they end up in theinvocation handlers.
Correspondingly, post-processors may encrypt or compress return
values before sending them back to the client.

5.1.3.1.5 Authorization

A server could force all invocations to include the username and
password of the caller which are extracted from the argument list
before calling the handlers. This could be combined with the ses-
sion processor to allow signing in once during asession. Security,
in general, is not addressed in this library and there are several
things to wish for. Currently, the library does not even support
basic HTTP authentication. Optional support for SSL though JSSE
is in planning though, although no release date is set yet.
Contributions are very welcome.

5.1.3.1.6 Profiling

Measuring the time between preProcess() and postProcess()
invocations for a call allows you to do minimal profiling like
average call times and such.

18

Marquée XML-RPC Library

6 XML-RPC AND SERVLETS

If your application is already using a web server you may want to
use the XmIRpcServer through a servlet wrapper i nstead of running
the XmIRpcServer as a service.

6.1 Example

A servlet example is available in t he marquee.xmlrpc.testing pack-
age. We'll just take alook at the highlights. This sample builds on
code supplied by David Watson. Thanks, David.

6.1.1 The init() method

The servlet init() method makes sure the XmIRpcServer is properly
set up and that there are custom serial zers available to convert all
Java objects used by the code.

public void init(
ServletConfig config)
throws ServletException

XmIRpcParser.setDriver(
"com.sun.xml _parser._Parser"”™);

XmIRpcSerializer.registerCustomSerializer(
new VectorSerializer());

XmIRpcSerializer.registerCustomSerializer(
new HashtableSerializer());

server = new XmlIRpcServer();

server.registerlnvocationHandler(
“Echo”, new EcholnvocationHandler());

server.registerlnvocationHandler(
“Speller”, new XmIRpcClient(
“www.stuffeddog.com”,
80,
“/speller/speller-rpc.cgi”));
}

The example uses two invocation handlers; an Echo handler and an
XmIRpcClient hooked up to the spellchecking service at
www.stuffeddog.com. This shows a nice feature introduced by
Hannes Walnéffer in the Helma XML-RPC Library; XmlIRpcClients
may also serve as InvocationHandlers. How is this? XmIRpcClients
have an invoke() method that you call wheny ou want the client o b-
ject toinvoke amethod on the server the client is connected to. | n-
vocation handlers also have an invoke() method that the
XmlRpcServer calls when an inbound call to that handler is re-
ceived. By chance the two invoke() methods have the same signa-
ture. By registering an XmlIRpcClient as an invocation handler,

Marquée XML-RPC Library

19

when the server receives acall to that handler, it callsitsinvoke()
method as it does with all handlers. The invoke() method of the cli-
ent, as | explained, in turn callsthe server for which it was created.
We have created a kind of relay that is very useful when an applet
is performing XML-RPC invocations on the server it was loaded
from.

Applets may only communicate with the server it originated from,
but if that server has registered an XmIRpcClient as an invocation
handler, that client will act asarelay to another XML-RPC service.
The sample servlet registers an XmIRpcClient under the name
"Speller", which is hooked up to the spelling service at
stuffeddog.com. Invoking the " Speller.speller.spell Check" method
on this servlet, will make the client automatically relay the call to
the stuffeddog server and back to the caller.

6.1.2 The doPost() method

The doPost() method for servlets using the XML-RPC library will
look pretty much the same.

public void doPost(
HttpServiletRequest req,
HttpServletResponse res)
throws ServletException, 10Exception

try
{

byte[] result = server.execute(
new ServerlnputStream(
req.getlnputStream(),
reqg.getContentLength()));

res.setContentType("text/xml");
res.setContentLength(result.length);

OutputStream output = res.getOutputStream();
output.write(result);
output.flush();

}

catch (java.lang.Throwable e) { /* do whatever */}
}

Currently, when calling the execute() method of the XmlIRpcServer,
you may have to wrap the input stream containing the XML-RPC
message in a marquee.xmlrpc.util.ServerlnputStream if the
XmlRpcServer is unable to identify the end of the stream. The
ServerlnputStream class will make sure that when the supplied
amount of bytes are read, and end of stream is reported. So the
server is not responding to calls, using ServerlnputStream will fix
it.

20

Marquée XML-RPC Library

7 OBJECTCOMM

This feature requires JDK 1.3.

Rainer Bischof of Electronic Data Systems has created an addon to
the library that may be used to transparently transfer complex ob-
jects via the XmlIRpc protocol. It is located in the mar-
guee.xmlrpc.objectcomm. This chapter contains a description of the
package, written by Rainer himself.

7.1 The Objectcomm Package

Using the marquee.xmlrpc.objectcomm package you can call meth-
ods on the server that expect parameters of any type (objects and
primitives) and return any type (object, primitive or void). That
means it behaves similar to RMI except with the limitation that any
returned object is passed by value, not as aremote object reference
as is possible with RMI. That means it simulates only objects re-
trieved via the RMI naming service. This allows the developer to
use RMI or XML-RPC transparently and switch between both even
at runtime. So you can use RMI within intranets and XM L-RPC for
Internet connections. And that’s really cool!

The objectstransferred are encoded into XML-RPC structsthat ad-
here to some objectcomm specific conventions. These conventions
allow to expressthe object’s class name, property names, property
values including null support, property class names and indicators
for circular references. This protocol is implemented on top of
XML-RPC and is not explained in detail here. Maybe later when |
have some time, for now please look into the code or the XML
documents being transferred if you are curious.

That brings us to the Disclaimer:

The XML documents transferred between client and
server are completely in line with the XmIRpc specifica-
tion. Nevertheless the method calls, parameters and re-
turn values are encoded as structs in a specific format
that is quite some effort to express in other implementa-
tions of XmIRpc. Therefore this package should only be
used in environemts where both client and server use this
package.

7.1.1 Using the package

First | would suggest that you install and try out the Marquée XML-
RPC Library without the objectcomm extension as thiswill get you
started with less hassle. Have a special look at how to use the
XmIRpcProxy. This stuff itself isreally cool and very useful when

Marquée XML-RPC Library

21

doing non-object oriented RPC via XML. The objectcomm package
relies on the proxy functionality provided by the default XM L-RPC
implementation. As any dynamic proxy implementation this re-
quires at least JDK 1.3.

The examples that are explained below are located in the package
marquee.xmlrpc.objectcomm.example. These examples assume that
you have the required XML-RPC libraries in the classpath. There
are two examples:

1. A simple XmIRpc service that transfers objects between a
client and a server.

2. The same example that uses not only XML-RPC but also
RMI to communicate with the same service.

7.1.1.1 Example 1

The first example uses of the following classes:
Employee A simple object to be transferred.

EmployeeServicelnterface An interface defining a service that
holds some employees and allows the
client to retrieve and update an em-

ployee.

XmIEmployeeService A service implementing the Employ-
eeServicelnterface for use with
XML-RPC.

XmlServer A small clas that starts the XmIRpc

server and registers the XmlEmploy-
eeService with it.

XmlClient A client that uses the XmlIEmploy-
eeService to retrieve and updates
employees.

How to invoke it:
1. Start the marquee.xmirpc.objectcomm.example.XmlServer.
2. Start the marquee.xmirpc.objectcomm.example.XmiClient.

All codeispretty straight forward and | will just explain the specif-
ics for objectcomm in each class. Employee implements
java.io.Serializeable. Thisisatagging interface required by the Se-
rializer used in objectcomm to indicate that this object may be
transferred over the wire. Additionally a default constructor isre-
quired by objectcomm since we can’t reconstruct an object from

22

Marquée XML-RPC Library

scratch without it.

The EmployeeServicelnterface extends the tagging interface
java.rmi.Remote and all methods declare to throw
java.rmi.RemoteException. This is required by the dbjectcomm
Proxy. This ensures that the Proxy may legally throw the Remote-
Exception if something happens during the call. And lot’ s of things
can happen during a network call: server down, server side out of
memory error, broken connecton, etc. Any server side exception
that is not declared in the interface definition is wrapped into a
java.rmi.RemoteException. Declared exceptions and RuntimeEx-
ceptions are re-thrown at the client side with the same message.

XmlIEmployeeService is a simple class that provides the service to
retrieve and store employees. XmlServer uses the objectcomm
server instead of the default XmIRpcServer. And finally, the
XmiClient first uses the XmlIEmployeeService directly in a non-
networked mode to show what the output should be and afterwards
uses the objectcomm transport to talk to the remote service.

7.1.1.2 Example 2

The second example uses these classes:
Employee Same as in the first example.
EmployeeServicelnterface Same as in the first example.

XmIRmiEmployeeService A simpleclassthat provides the ser-
vicetoretrieve and store employees.

XmIRmiServer A small wrapper that starts the ser-
ver.
XmIRmiClient A client that uses the XmIEmployee-

Serviceto retrieve and updates emp-
loyees via XML-RPC and RMI.

How to invoke it:

1. Create the RMI stub and skeleton for XmlIRmiEmployee-
Service using RMIC (required by the UnicastRemoteOb-
ject).

2. Start the marquee.xmlrpc.objectcomm.example.XmlRmi-
Server.

3. Start the marquee.xmlrpc.objectcomm.example.XmlRmi-
Client.

Marquée XML-RPC Library

23

Again | will just explain the specifics for objectcomm in each class.
The XmIRmiEmployeeService class is the same as above except
that it ext endsjava.rmi.server.UnicastRemoteObject so that it can
be used not only with XML-RPC but also with RMI.

The XmIRmiServer starts the XML-RPC server and the RMI regis-
try and registers the same XmIRmiEmployeeService with both of
them.

The XmlClient is the same as above but aditionally the operations
are performed using RM| aswell. Asyou can see the output for the
RMI based query includesthe third employee that was stored in the
server when doing the XML-RPC based operations before.

That' s all you need to know to build applications that transparently
use one of three modes; local, remote using XML-RPC, and remote
using RMI.

24

Marquée XML-RPC Library

