

M a r q u é e X M L -RPC L ibrary 1

Marquée XML-RPC Library

An implementation of the XML- RPC Specification for Java™

Abstract

This document contains a user’s guide and implementatio n
walkthrough. I t may be useful to both users and developers
customising the l ibrary or just wishing to increase their
knowledge of i t .

2 M a r q u é e X M L -RPC L ibrary

1 INTRODUCTION ...3
1.1 Background 3

1.1.1 Design strategies 3

2 OVERVIEW...4
2.1 Components 4

3 SERIALIZATION ...5
3.1 Serializers 5

3.1.1 XmlRpcCustomSerializer 6

4 THE CLIENT...9
4.1 Vanilla Flavored XmlRpcClient 9
4.2 Double Chocolate Chip XmlRpcProxy 10

4.2.1 Example 10

5 THE SERVER..13
5.1 Overview 13

5.1.1 Setting up an XML-RPC server 13
5.1.2 Invocation Handlers 14
5.1.3 Invocation Processors 16

6 XML-RPC AND SERVLETS ...19
6.1 Example 19

6.1.1 The init() method 19
6.1.2 The doPost() method 20

7 OBJECTCOMM ...21
7.1 The Objectcomm Package 21

7.1.1 Using the package 21

CONTENTS

M a r q u é e X M L -RPC L ibrary 3

1.1 Background

The Marquée XML-RPC Library is an implementation of the XML-

RPC specification and is based on another implementation for

Java™ by Hannes Walnöffer, from which several ideas were

borrowed when designing this software. The re ason for developing

this library was to fill in the blanks, in terms of functionality,

where other implementations fell short. Particularly, customizeable

seria lizers was something we could not do without, and we also

wanted to optionally make use of features available in JDK 1.3, like

the abil i ty to dynamically generate proxy classes. We wanted the

design to allow for customization in other areas as well.

1.1.1 Design strategies

When developing the l ibrary, we have tr ied to keep resource

consumption to reasonable minimum to make the library slim

enough to be used in situations where this approach is preferable or

neces sary. We have also focused on keeping the code as c lean as

p o s s ible, hoping i t will reach production standard and be a natural

choice when adding XML-RPC support to various Java™ projects.

We wanted the l ibrary to be customizeable in as many areas as

pos sible and will continue to open up the API for further

customizat ion. This s trategy has been proven useful by Rainer

Bischof at Ele ctronic Data Systems, who has added a package that

suppor ts t rans ferring of complete object graphs and exceptions in a

fashion very similar to that of RMI.

In the spirit of XML-RPC, the source code has been made available

for all use in hope that we will receive lots of feedback so that we

may tune the l ibrary to fi t into as many situat ions as possible . We

also welcome code contributions of any kind that will contribute to

making this library more stable, efficient, interoperable, or

comprehensible.

1 INTRODUCTION

4 M a r q u é e X M L -RPC L ibrary

2.1 Components

The l ibrary consists of four major parts:

Server Can be used in a servlet environment or as a s tand-

alone server accepting HTTP posts con taining XML-

RPC messages. The server uses the parser to

interpret the XML-RPC messages and the serializer

to convert return values to their XML-RPC

counterpar ts . A s ecure server supporting Secure

Sockets Layer (SSL) will be available during the fall

2001, or so.

Client Connects to an XML-RPC server and sends and

receives XML-RPC messages and responses. I t uses

the serializer to convert call arg uments and the

parser to interpret return values.

Parser Uses any SAX compliant driver to parse XML-RPC

messages and extract ing the values con tained therein.

Serializer Converts Java objects into their XML-RPC

counterparts. Custom serializers are used fo r

converting o b jects not inherently known to the basic

serializer.

Users will come in contact with the serializer when specifying

which custom serializers to be available during the serialization

process. The library contains several custom serializers fo r

serializing Java 2 collections, arrays, and other types of objects.

Users will also come in contact with the parser when specifying

which SAX driver to use during parsing. All other interaction

occurs through the server and the cl ient .

2 OVERVIEW

M a r q u é e X M L -RPC L ibrary 5

3.1 Serializers

When sending XML-RPC messages from an XmlRpcClient to an

XML-RPC server and from an XmlRpcServer to an XML-RPC

client , Java objects need to be translated into their XML-RPC

representations. Servers need to translate return values from their

handlers , and cl ients need to translate arguments supplied in

method calls . This is accomplished by using serializers.

All serialization occurs initially through the XmlRpcSerializer class

which has support for basic object types l ike java.lang.String,

java.lang.Integer, and so forth (see l ist below). If the

XmlRpcSerializer is passed an object which it does not recognize, it

keeps a list of XmlRpcCustomSerializers which it tries to use

instead. Each custom serializer reports which kind of Java object it

knows how to serialize.

boolean char

byte short

int long

float double

String java.util.Date

byte[]

The XmlRpcSerializer class supplies a static serialize() method

through which all Java objects are serialized. This applies when

using custom serializers as we ll. The serialize() method converts

the suppl ied object and appends the XML-RPC representation in the

supplied string buffer.

public static void serialize(
 Object value,
 StringBuffer output);

By using custom serializers, Java objects not inherently s u pported

by the XmlRpcSerializer may be handled as well. Cu s tom

serializers are registered and unregistered through the s tat ic

registerCu s tomSerializer() and unregisterCustomSeria lizer()

methods.

3 SERIALIZATION

6 M a r q u é e X M L -RPC L ibrary

public static void registerCustomSerializer(
 XmlRpcCustomSerializer serializer);

public static void unregisterCustomSerializer(
 XmlRpcCustomSerializer serializer);

As the methods in XmlRpcSerializer are static, custom seria lizers

need only be registered with the XmlRpcSerializer once per JVM

sess ion and will be available to all classes within the JVM.

3.1.1 XmlRpcCustomSerializer

The following class represents a custom serializer that may handle

any kind of Java 2 collection which is serialized into an XML-RPC

array. This serializer is included in the Marquée XML-RPC library.

public class CollectionSerializer
 implements XmlRpcCustomSerializer
{
 public Class getSupportedClass()
 {
 return Collection.class;
 }

 public void serialize(
 Object Value,
 StringBuffer output)
 {
 Collection c = (Collection) value;
 Iterator iter = c.iterator();

 output.append("<array><data>");

 while (iter.hasNext())
 {
 XmlRpcSerializer.serialize(iter.next());
 }

 output.append("</data></array>");
 }
}

This class implements the methods introduced in

XmlRpcCus tomSerializer and is a complete serializer.

3.1.1.1 getSupportedClass()

The getSupportedClass() method returns the class indicating which

types of objects i t knows how t o serialize. This method is called in

two situations by the XmlRpcSerializer. First when the serializer is

installed by calling XmlRpcSeria lizer.registerCustomSerializer(),

and second when an actual object has been requested for serial iza-

tion by calling the XmlRpcSerializer.registerCustomSerializer()

M a r q u é e X M L -RPC L ibrary 7

method.

When registering a custom serializer, XmlRpcSerializer

inves tigates the supported class so that i t can determine where in

the list of custom serializers the serializer belongs. For instance, if

the serializer list already contains a serializer that knows how to

handle java.util .Vector objects, the generic Co llectionSerializer,

above, will end up after the java.util.Vector serilizer. That is, the

Vector serializer will override the generic CollectionSeria lizer, as it

operates on a more specialized kind of collection.

When an object has been requested for serial izat ion, the

XmlRpcSerializer class queries every custom serializer in the list

until i t f inds a serializer that knows how to handle the supplied

value. For instance, when passing the XmlRpcSeria lizer.serialize()

method a java.util.ArrayList object, the Colle ctionSerializer, if

registered with XmlRpcSerializer, will catch the object (as it is an

instance of java.util .Collection) and convert i t into an XML-RPC

array.

3.1.1.2 serialize()

Notice how the serialize() method in the CollectionSerializer above

reuses the default serialization mechanism introduced in

XmlRpcSerializer. The supplied collection may contain any kind of

object which the XmlRpcSerializer knows how to handle, or for

which a custom serializer has been registered. Theoretically, this

may result in a recursive call to the seria lize() method above if any

of the elements in the collection is another collection.

3.1.1.3 Included custom serializers

The Marquee XML-RPC library supplies a few useful

implementations of the XmlRpcCustomSerializer interface for

conver t ing generic collections and maps, as well as a few other

more specialized types. It also contains a reflective serializer which

can serialize any type of object by using Java Refle ct ion.

CollectionSerializer Serializes Java 2 collections into XML-

RPC arrays (requires JDK 1.2 or

above).

MapSerializer Serializes Java 2 maps into XML-RPC

structs (requires JDK 1.2 or above).

HashtableSerializer Serializes hash tables into XML-RPC

s t ruc t s .

8 M a r q u é e X M L -RPC L ibrary

VectorSerializer Serializes vectors into XML-RPC

arrays .

IntArraySerializer Serializes int[] arrays into XML-RPC

arrays.

FloatArraySerializer Serializes float[] arrays into XML-RPC

arrays.

DoubleArraySerializer Serializes double[] arrays into XML-

RPC arrays.

BooleanArraySerializer Serializes boolean[] arrays into XML-

RPC arrays.

ObjectArraySerializer Serializes arrays containing any kind of

object into XML-RPC arrays.

ReflectiveSerializer Serializes any object into XML-RPC

structs using ref lect ion.

The generic collection serializer, presented in the example above,

requires JDK 1.2, as does the generic map serializer. If you don't

support Java 1.2, the VectorSerializer and HashtableSerializer

classes may be used in s tead .

M a r q u é e X M L -RPC L ibrary 9

4.1 Vanilla Flavored XmlRpcClient

There are two ways of invoking methods on an XML-RPC server –

through a regular XmlRpcClient or through an XmlRpcProxy. This

section describes how an XmlRpcClient is setup and how you use it

to invoke methods. You use one XmlRpcClient for each XML-RPC

service you are using.

Each client is associated with a part icular host , port and path into

that host . This is al l specified when creating the cl ient and can not

be changed once the client is created. Currently, an XmlRpcClient

may only be used by one thread at a t ime. This applies to the

XmlRpcProxy as well. This will change with the next release,

however, expected sometime this summer. For now, if several

threads need to communicate with the same server, a separate

XmlRpcClient has to be created for each thread.

The XmlRpcClient uses the XmlRpcSerializer to convert call

arg uments to their XML-RPC counterparts. Using custom

s erializers, the arguments may be of just about any type. This is a

key issue; i f you supply an argument of a type other than those

listed in 1.1, a custom serializer must be available to convert the

argument. Ot herwise an exception will be raised.

To setup an XmlRpcClient you perform the following steps:

// 1) Register the serializers we need
XmlRpcSerializer.registerCustomSerializer(
 new HashtableSerializer());

// 2) Create the client.
XmlRpcClient client = new XmlRpcClient(
 "www.stuffeddog.com", 80, "/speller/speller-rpc.cgi");

In step 1, we make sure that all arguments we will send to the client

will be serializable to XML-RPC. One of the methods we will call

later on this client will receive a Hashtable which is not i nherently

supported by the XmlRpcSerializer. Therefor, we re g ister a custom

serializer (supplied with the Marquée XM L-RPC Library) that

knows how to serialize Hashtables.

In step 2, we create the actual XmlRpcClient and specify which

server the client should send invocations to. It is not important that

step 1 comes before step 2; i t is not unti l we actually invoke the

client that serialization occurs.

To invoke methods on the server, the invoke() method is used. This

comes in two flavors, both accepting the name of the method to i n -

4 THE CLIENT

10 M a r q u é e X M L -RPC L ibrary

voke and either a java.util .Vector or an object array containing the

arguments to use for the call:

// 3) Invoke a method.
Vector response = (Vector) client.invoke(
 "speller.spellChecking",
 new Object[] {
 "To be or not to be, that is the qwestion",
 new Hashtable() });

In this s tep, several things happen. First , we choose to cal l the

ob ject array version of invoke(). The arguments are a string with a

typo, and an empty Hashtable. The client will serialize these

arg uments into XML-RPC and open a socket towards

www.stuffeddog.com, using port 80. The server will hopefully

respond with an XML-RPC response. The response is parsed and

the contained return value wil l be constructed and returned to the

caller. In this case, we expect to receive a vector wi th suggest ions

for all spelling mis takes made in the text supplied in the call.

Sending the response vector to the console will show a suggestion

for the "qwest ion" typo.

When using an XmlRpcClient we are responsible for convert ing the

return value to what we expect the server to respond with. This will

always be of one of the types listed in 1.1, or a java.util.Vector or a

java.util .Hashtable. Whenever the r esponse i s an XML-RPC array,

the return value will be a java.util .Vector, and whenever it is an

XML-RPC struct it will be a java.util .Hashtable. Note that this has

nothing t o do with the serializer. That is, even if we did not register

the HashtableSerializer, we would still receive a Hashtable if the

response was an XML-RPC struct. The serializer is only involved

when sending arguments to the server .

4.2 Double Chocolate Chip XmlRpcProxy

An alternative way of calling server procedures is to use a dynamic

XmlRpcProxy. When creating an instance of the XmlRpcProxy you

specify the URL of the server which should be proxied for, and a

l ist of interfaces the proxy should implement. The proxy may be

typecast to and called through any of these interfaces, which will

convert calls to XML-RPC messages that are sent to the server

us ing the "<handler>.<method>" naming convention. The names of

the interfaces and their methods should, in other words, correspond

to services and procedures available on the server.

4.2.1 Example

When developing an applicat ion using XML-RPC servers located

This feature requires JDK 1.3.

M a r q u é e X M L -RPC L ibrary 1 1

somewhere on the Internet , you start by expressing the services

available on the servers in Java interfaces.

interface mailToTheFuture
{
 /**
 * Adds a message to username's queue.
 *
 * @param username The email address of a
 * registered user.
 *
 * @param password must be that user's password.
 *
 * @param message A hashtable containing the
 * following elements; dateTime,
 * messageBody, receiverMailAd-
 * dress, and subject.
 *
 * @return The number of messages in username's
 * queue.
 */

 int addMessage(
 String username,
 String password,
 Hashtable message)
 throws Throwable;

 /**
 * Deletes a message from username's queue.
 *
 * @param username The email address of a
 * registered user.
 *
 * @param password must be that user's password.
 *
 * @param ordinal The number of the message to
 * remove.
 *
 * @return An empty string.
 */

 String deleteMessage(
 String username,
 String password,
 int ordinal)
 throws Throwable;

 /** Rest of the methods are omitted for brevity */
}

Every service offered by a server that is to be used by the

applic ation is defined in its own interface. The list of interfaces are

s u pplied to XmlRpcProxy.createProxy() along with the URL of the

server, to receive an object implementing the supplied interfaces.

12 M a r q u é e X M L -RPC L ibrary

Object o = XmlRpcProxy.createProxy(
 "www.mailtothefuture.com",
 "/RPC2",
 80,
 new Class[] { mailToTheFuture.class });

The proxy object may be typecast to any of the interfaces and used

a s such .

mailToTheFuture mttf = (mailToTheFuture) o;

System.out.println(
 mttf.addMessage(
 “usr@mailtothefuture.com”,
 “secret”,
 aMsgTable));

The call to mttf .addMessage() will result in an XML-RPC mes sage

being sent to t he www.mailtothefuture.com host with "mailToThe-

Future. addMessage" as the included method call . The compiler

may check that the arguments are of correct type and allow IDE's to

perform code completion and such .

M a r q u é e X M L -RPC L ibrary 1 3

5.1 Overview

When set t ing up an XML-RPC server you supply a set of o b jects

that will receive the method calls parsed by the server dispatchers.

These objects must implement the XmlRpcInvocationHandler

interface which can be achieved by extending the

ReflectiveInvocatio nHandler class, wrapping the object in a

ReflectiveInvocationHa ndler instance, or implementing it from

scratch. The methods that are to be invoked through XML-RPC

must only use parameters of the types l is ted in Serializers (3.1).

An exception to this rule is when using invocation
processors that modify the list of call arguments
according to some set of rules. For instance, an
invocation processor may add an additional transaction
object for methods with names starting with "tx_".
These arguments are not transported using XML-RPC
and may be of any type.

Return values may be of any type supported by the buil t -in

seria lizer or any of the registered custom serializers. That is, if the

CollectionSerializer supplied with the XML-RPC library is

registered with the server, invocation handlers may return any type

of object implementing the Java 2 Collection interface. Custom

serializers are ordered by specialization. That is, the reflective

serializer will always be placed last and the MapSerializer will

always be placed before the Collectio nSerializer, and so on. This

ensures that the most appropriate serializer will be used for an

object during serialization – for instance, a HashMap will not be

serialized using the generic Collection serializer if a MapSerializer

is available.

5.1.1 Setting up an XML-RPC server

This example shows how to set up a server by registering

invocation handlers and invocation processors. It also shows how to

specify which SAX driver and custom serializers to use.

5 THE SERVER

14 M a r q u é e X M L -RPC L ibrary

import marquee.xmlrpc.*;
import marquee.xmlrpc.serializers.*;

class SampleHandler extends ReflectiveInvocationHandler
{
 String getNameOfMonth(int month)
 throws IllegalArgumentException
 {
 if (month > 0 && month < 13)
 {
 return months[month];
 }

 throw new IllegalArgumentException(
 "Invalid month.");
 }

 String[] getAllMonths()
 {
 return months;
 }

 private final static String[] months =
 {
 "January", "February", "March", "April",
 "May", "June", "July", "August", "September",
 "October", "November", "December"
 }
}

public class SampleServer
{
 public staic void main(String[] args)
 {
 XmlRpcParser.setDriver(
 "com.sun.xml.parser.Parser");

 XmlRpcSerializer.registerCustomSerializer(
 new ObjectArraySerializer());

 XmlRpcServer server = new XmlRpcServer();

 server.registerInvocationHandler(
 new SampleHandler());

 server.runAsService(80);
 }
}

The ObjectArraySerializer added in main() makes sure that methods

returning arrays of objects (including arrays of Strings) are

interpretable by the serializer.

5.1.2 Invocation Handlers

XML-RPC messages are parsed by the XmlRpcServer and dis -

patched to an XmlRpcInvocationHandler corresponding to the han-

dler name contained in the element. The server creates an XML-

M a r q u é e X M L -RPC L ibrary 1 5

RPC response based on the return value of the handler, or based on

an exception thrown by the handler. The XmlRpcInvocationHandler

interface contains a single method that invocation handlers must

implement. The ReflectiveInvocationHandler class supplies a d e-

fault implementation of this interface that you'll use most of the

times.

public Object invoke(
 String methodName,
 Vector arguments)
 throws Throwable;

5.1.2.1 ReflectiveInvocationHandler

The easiest way to create an invocation handler is to inheri t the

XmlRpcReflectiveInvocationHandler class which implements the

XmlRpcInvocationHandler using Java Reflection to find the method

targeted by the call. The XmlRpcRefle ctiveInvocationHandler class

may also be used to wrap a Java object in a reflective handler, if

your class is already inherit ing from another class. If you look at

the SampleServer above, the SampleHandler represents a complete

invocation handler that extends the reflective invocation handler.

This is the most common way of creating invocation handlers.

If , for some reason, you do not wish to inherit

XmlRpcReflectiveInvocationHandler, you may wrap any object in a

new Refle ctiveInvocationHandler. This gives the overhead of an

additional object being created (although with a single refe rence

data me mber);

ReflectiveInvocationHandler handler =
 new ReflectiveInvocationHandler(myObject);

This approach is useful when exposing legacy code with XML-RPC

or if your object class is already inheriting from another class. The

ReflectiveInvocationHandler constructor has an optional second

parameter in which you may supply a l ist of methods that should be

available in the wrapped object.

ReflectiveInvocationHandler handler =
 new ReflectiveInvocationHandler(
 myObject,
 new String[] { “myFunc1”, “myFunc5” });

The str ing array indicates that only methods named “myFunc1” or

“myFunc5” should be exposed for remote invocation, regardless of

how many methods are available in myObject. You may update this

16 M a r q u é e X M L -RPC L ibrary

l ist later on through a call to setEntryPoints() which is also avail-

able for classes extending R eflectiveInvocationHandler. Supplying

null will make all methods available.

handler.setEntryPoints(new String[] { “myFunc1” });

5.1.2.2 Writing your own handler from scratch

If you do not wish to use the reflect ive handler wich uses Java

Reflection to identify which method to call, you may write your

own invocation handler. This may increase performance slightly if

you have a single method or only a few methods in your class.

public class MyInvocationHandler
 implements XmlRpcInvocationHandler
{
 public Object invoke(
 String methodName,
 Vector arguments)
 throws Throwable
 {
 if (methodName.equals("someMethod"))
 {
 return someMethod();
 }

 throw new Exception("Method not found in handler.");
 }

 public String someFunction()
 {
 return "All done!";
 }
}

5.1.3 Invocation Processors

The XML-RPC library contains a powerful mechanism for attaching

functionali ty that should be executed on every invocation

regard less of the intended invocation handler . Through invocation

proces sors, developers may perform various steps before and after

hand lers are invoked, and when exceptions during the invocat ion

occur.

For instance, writing a custom event logger that loggs all intera c-

t ion on an XML-RPC server to a file or over a socket is just a ma t -

ter of i mplementing the XmlRpcInvocationProcessor interface, and

a t taching the processor to the XmlRpcServer. Its preProcess(),

postProcess() and onException() methods will be called on every

call sent to the server (onException() being called only on excep -

t ions). Invocation processors may be used in several other, more

M a r q u é e X M L -RPC L ibrary 1 7

useful scenarios as well .

The preProcess() method receives a lot of useful information from

the server that can be used to achieve some functionali ty; the callId

is a s equence number that may be used to match a corresponding

call to postProcess() at a later time ; the callerIp contains the IP

address of the client performing the call which may be very useful

in logging, fil tering, or session management situat ions; the handler

and method names indicate which method will ultimately be called

after the preProcess() method has had i ts say. This may be useful

when logging or filtering out clients from specific handlers or

methods. Finally, the arguments array contains the arguments tha t

will be used when invoking the invocation handler. This parameter

is particularly useful as you may add or remove elements from this

l ist .

boolean preProcess(
 int callId,
 String callerIp,
 String handler,
 String method,
 Vector arguments);

Returning false from preProcess() means that the invocation should

be abor ted. Currently, there is no way of indicating to the user the

reason for abort ing.

5.1.3.1 Scenarios

The following list shows a few scenarios where invocation handle rs

could be used .

5.1.3.1.1 Filtering invocations

Implementing a filter is not very difficult. The preProcess() method

of the filter just returns false when the IP address of the caller ma t -

ches an IP address of an internal list . This may be extended to

include handlers and methods as well . The l ibrary contains an

exemple of a fi l tering processor that accepts IP addresses with wild

cards, among other things.

5.1.3.1.2 Managing transactions

In this case, preProcess() could examine the name of the method (or

handler) and cre ate some Transaction object if the name starts with

"tx_" for i nstance. The transaction object could be inserted first in

the arguments l ist , and would be commited in postProcess(). The

invocation handlers with names start ing with "tx_" would naturally

18 M a r q u é e X M L -RPC L ibrary

have to be prepared to accept this addit ional arg ument. Similarly,

other types of objects may be sent to invocat ion handlers that are

not serialized over XML-RPC. Using naming conventions is one

way of solving this problem.

5.1.3.1.3 Managing sessions

The library contains an additional processor example which, during

the invocat ion, associates the cl ient with a Session object . The

Ses s ion objec t extends java.util .Hashtable and may be used by

invocat ion handlers to s tore cl ient s tate between invocations. The

preProces s () method of that processor associates the handling

th read with the IP address of the caller. At any time, the invocation

handler (or any code called from the handler) may acquire the

session object associated with the client. If a client performs five

concurrent calls to the server, these calls (assuming threads are

available) will be handled by five worker threads in the server,

s imultaneously. The processor associates all five threads with the

same IP address, so all threads will receive the same session object

when asked for.

5.1.3.1.4 Encryption and Compression

Pre -processors may, based on some criteria, decrypt or decompress

particular arguments before they end up in the invocation handlers.

Correspondingly, post-processors may encrypt o r compress return

values before sending them back to the cl ient .

5.1.3.1.5 Authorization

A server could force all invocations to include the username and

password of the cal ler which are extracted from the argument list

before calling the hand lers. This could b e combined with the ses -

sion processor to allow signing in once d uring a session. Securi ty,

in general , is not addressed in this l ibrary and there are several

things to wish for. Currently, the l ibrary does not even support

basic HTTP authentication. O ptional support for SSL though JSSE

is in planning though, al though no release date is set yet .

Contrib u t ions are very welcome.

5.1.3.1.6 Profiling

Measuring the t ime between preProcess() and postProcess()

invocations for a call allows you to do minimal profiling like

average call t imes and such.

M a r q u é e X M L -RPC L ibrary 1 9

If your application is already using a web server you may want to

use the XmlRpcServer through a servlet wrapper i nstead of running

the XmlRpcServer as a service.

6.1 Example

A servlet example is available in t he marquee.xmlrpc.testing pack-

age. We’ll just take a look at the highlights. This sample builds on

code supplied by David Watson. Thanks, David.

6.1.1 The init() method

The servlet init() method makes sure the XmlRpcServer is properly

set up and that there are custom serialzers available to convert all

Java objects used by the code.

public void init(
 ServletConfig config)
 throws ServletException
{
 XmlRpcParser.setDriver(
 "com.sun.xml.parser.Parser");

 XmlRpcSerializer.registerCustomSerializer(
 new VectorSerializer());

 XmlRpcSerializer.registerCustomSerializer(
 new HashtableSerializer());

 server = new XmlRpcServer();

 server.registerInvocationHandler(
 “Echo”, new EchoInvocationHandler());

 server.registerInvocationHandler(
 “Speller”, new XmlRpcClient(
 “www.stuffeddog.com”,
 80,
 “/speller/speller-rpc.cgi”));
}

The example uses two invocation handlers; an Echo handler and an

XmlRpcClient hooked up to the spellchecking service at

www.stuffeddog.com. This shows a nice feature introduced by

Hannes Walnöffer in the Helma XML-RPC Library; XmlRpcClients

may also serve as InvocationHandlers. How is this? XmlRpcClients

have an invoke() method that you call when y ou want the client o b-

ject to invoke a method on the server the cl ient is connected to. I n-

vocation handlers also have an invoke() method that the

XmlRpcServer calls when an inbound call to that handler is re -

ceived. By chance the two invoke() methods have the same signa-

ture. By registering an XmlRpcClient as an invocation handler,

6 XML-RPC AND SERVLETS

20 M a r q u é e X M L -RPC L ibrary

when the server receives a call to that handler, i t calls i ts i nvoke()

method as i t does with all handlers. The invoke() method of the cli-

ent, as I explained, in turn calls the serv er for which it was created.

We have created a kind of relay that is very useful when an applet

is performing XML-RPC invocat ions on the server i t was loaded

from.

Applets may only communicate with the server it originated from,

but i f that server has registered an XmlRpcClient as an invocation

handler, that client will act as a relay to another XML-RPC service.

The sample servlet registers an XmlRpcClient under the name

"Speller", which is hooked up to the spell ing service at

stuffe ddog.com. Invoking the " Speller.speller.spellCheck" method

on this servlet, will make the client automatically relay the call to

the stuffeddog server and back to the caller .

6.1.2 The doPost() method

The doPost() method for servlets using the XML-RPC library will

look pretty much the same.

public void doPost(
 HttpServletRequest req,
 HttpServletResponse res)
 throws ServletException, IOException
{
 try
 {
 byte[] result = server.execute(
 new ServerInputStream(
 req.getInputStream(),
 req.getContentLength()));

 res.setContentType("text/xml");
 res.setContentLength(result.length);

 OutputStream output = res.getOutputStream();
 output.write(result);
 output.flush();
 }
 catch (java.lang.Throwable e) { /* do whatever */}
}

Currently, when calling the execute() method of the XmlRpcServer,

you may have to wrap the input stream con taining the XML-RPC

message in a ma rquee.xmlrpc.util.ServerInputStream if the

XmlRpcServer is unable to identify the end of the stream. The

ServerInputStream class will make sure that when the supplied

amount of bytes are read, and end of stream is reported. So the

server is not responding to calls, using ServerInputStream will fix

i t .

M a r q u é e X M L -RPC L ibrary 2 1

Rainer Bischof of Electronic Data Systems has created an addon to

the library that may be used to transparently transfer complex o b -

jects via the XmlRpc protocol. It is located in the ma r-

quee.xmlrpc.objectcomm. This chapter contains a descrip tion of the

package, written by Rainer himself.

7.1 The Objectcomm Package

Using the marquee.xmlrpc.objectcomm package you can call meth -

ods on the server that expect parameters of any type (o b jects and

primitives) and return any type (object, primitive or void). That

means it behaves similar to RMI except with the limitation that any

returned object is passed by value, not as a remote object reference

as is possible with RMI. That means i t simulates only objects re -

trieved via the RMI naming service. This allows the developer to

use RMI or XML-RPC transparently and switch between both even

at runtime. So you can use RMI within intranets and XML-RPC for

Internet connections. And that’s really cool!

The objects transferred are encoded into XML-RPC structs that a d-

here to some objectcomm specific conventions. These conventions

allow to express the object‘s class name, property names, property

values including null support , property class names and indicators

for circular references. This protocol is implemented on top of

XML-RPC and is not explained in detail here. Maybe later when I

have some time, for now please look into the code or the XML

documents being transferred if you are curious.

That brings us to the Disclaimer:

The XML documents transferred between client and
server are completely in line with the XmlRpc specifica-
tion. Nevertheless the method calls, parameters and r e-
turn values are encoded as structs in a specific format
that is quite some effort to express in other implementa-
tions of XmlRpc. Therefore this package should only be
used in environemts where both client and server use this
package.

7.1.1 Using the package

First I would suggest that you install and try out the Marquée XML-

RPC Library without the objectcomm extension as this will get you

started with less hassle . Have a special look at how to use the

XmlRpcProxy. This stuff itself is really cool and very useful when

7 OBJECTCOMM

This feature requires JDK 1.3.

22 M a r q u é e X M L -RPC L ibrary

doing non-object oriented RPC via XML. The objectcomm package

relies on the proxy functionali ty provided by the default XML-RPC

implementation. As any dynamic proxy implementation this re -

quires at least JDK 1.3.

The examples that are explained below are located in the package

marquee.xmlrpc.objectcomm.example. These exa mples assume that

you have the required XML-RPC libraries in the classpath. There

are two examples:

1. A simple XmlRpc service that transfers objects between a

client and a server.

2. The same example that uses not only XML-RPC but also

RMI to communicate with the same service.

7.1.1.1 Example 1

The first example uses of the following cla s s e s :

Employee A simple object to be transferred.

EmployeeServiceInterface An interface defining a service that

holds some employees and allows the

cl ient to retr ieve and update an em-

ployee.

XmlEmployeeService A service implementing the Emplo y-

eeServiceIn terface for use with

XML-RPC.

XmlServer A small clas that starts the XmlRpc

server and registers the XmlEmplo y-

eeService with it.

XmlClient A client that uses the XmlEmplo y-

eeService to retr ieve and upda tes

employees.

How to invoke it:

1. Start the marquee.xmlrpc.objectcomm.example.XmlServer.

2. Start the marquee.xmlrpc.objectcomm.example.XmlClient.

All code is pretty straight forward and I will just explain the specif-

ics for objectcomm in each class. Employee implements

java.io.Serializeable. This is a tagging interface required by the Se-

rializer used in objectcomm to indicate that this object may be

transferred over the wire. Additionally a default constructor is r e -

quired by objectcomm since we can’t reconstruct an object from

M a r q u é e X M L -RPC L ibrary 2 3

scratch without i t .

The EmployeeServiceInterface extends the tagging interface

java.rmi.Remote and all methods declare to throw

java.rmi.RemoteException. This is required by the ob jectcomm

Proxy. This ensures that the Proxy may legally throw the Remote-

Exception if something happens during the call. And lot’s of things

can happen during a network call : server down, server side out of

memory error, broken connecton, etc. Any server side exception

that is not declared in the interface definit ion is wrapped into a

java.rmi.RemoteException. Declared exceptions and RuntimeEx-

ceptions are re -thrown at the client side with the same me s sage.

XmlEmployeeService is a simple class that provides the service to

retrieve and store employees. XmlServer uses the objectcomm

server instead of the default XmlRp cServer. And finally, the

XmlClient first uses the XmlEmployeeService directly in a non-

networked mode to show what the output should be and afterwards

uses the objectcomm transport to talk to the remote service.

7.1.1.2 Example 2

The second example uses these cla s s e s :

Employee Same as in the first example.

EmployeeServiceInterface Same as in the first example.

XmlRmiEmployeeService A simple class that provides the ser-

vice to retr ieve and store employees.

XmlRmiServer A small wrapper that s tar ts the ser-

ver.

XmlRmiClient A client that uses the XmlEmployee-

Service to retrieve and updates emp-

loyees via XML-RPC and RMI.

How to invoke it:

1. Create the RMI stub and skeleton for XmlRmiEmployee-

Service using RMIC (required by the UnicastRemoteOb-

ject).

2. Start the ma rquee.xml rpc.objectcomm.example.XmlRmi -

Server.

3. Start the ma rquee.xmlrpc.objectcomm.example.XmlRmi -

Client.

24 M a r q u é e X M L -RPC L ibrary

Again I will just explain the specifics for objectcomm in each class.

The XmlRmiEmployeeService class is the same as above except

that it ext ends java.rmi.server.UnicastRemoteObject so that i t can

be used not only with XML-RPC but also with RMI.

The XmlRmiServer starts the XML-RPC server and the RMI regis -

try and registers the same XmlRmiEmployeeService with both of

them.

The XmlClient is the same as above but adit ionally the operat ions

are performed using RMI as well . As you can see the output for the

RMI based query includes the third employee that was stored in the

server when doing the XML-RPC based operations before.

That’s all you need to know to build applic at ions that t rans parently

use one of three modes; local, remote using XML-RPC, and remote

using RMI.

